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Abstract—This paper presents an asymptotic solution for the natural frequency of the breathing
-vibrations of a circular cylindrical shell filled with a liquid. The effect of inertial force of the liquid
is incorporated in the equations of motion of the shell as virtual mass. The solution is valid under
any possible combination of the boundary conditions, characterizing the simply supported. the
clamped and the free ends. It is shown that, as in the cases of empty shells, the axial modal
characteristics can be classified as belonging to five types depending on whether the ends are free
or supported, and whether or not the supported ends are axially constrained. Results of an experi-
ment are presented to show a good agreement with theoretical predictions.

[. INTRODUCTION

In previous papers (Koga and Saito, 1988 ; Koga, 1988) the first author has shown by an
asymptotic method that the free vibration characteristics of empty circular cylindrical shells
can be classified as belonging to five types, depending on whether the ends of the cylinder
are free or supported, and whether or not the supported ends are axially constrained. A
simple formula for the natural frequency has been derived and proved to be accurate enough
for engineering purposes by a numerical comparison with available results and by an
experiment. In a more recent paper (Koga and Morimatsu, 1989), the asymptotic method
was applied to the buckling of circular cylindrical shells under uniform external pressure
to obtain a simple formula for the buckling pressure. It has been shown that the boundary
conditions have a similar effect on the buckling characteristics as on the free vibration
characteristics. Knowing that the asymptotic method is effective for both the lateral pressure
and the inertial loading, we can anticipate very well that the method will also be effective
for the free vibrations of circular cylindrical shells filled with a liquid. This is particularty
so when the liquid pressure exerted upon the surface of the shell is due to the inertial force
of the oscillating liquid so that the effect of the liquid can be incorporated in the equations
of motion of the shell as virtual mass.

Studies on the effects of the free surface motion of the internal liquid by Lindholm ez
al. (1962), of the flexibility of the bottom plate by Bhuta and Koval (1964), and of
compressibility of the liquid by Berry and Reissner (1958) have shown that the inclusion
of the inertial term associated with virtual mass in the equations of motion of the shell is
adequate for determining the natural frequency, if the shell is not very short and the bending
rigidity of the bottom plate is not very low, and if the flow of the liquid has a velocity
potential. In the case specified above, an analytical expression of the virtual mass is given
in Lindholm (1962), Bhuta and Koval (1964) and Berry and Reissner (1958), and an
approximate expression of it has been derived by Lakis and Paidoussis (1971) for finite
element implementation. It should be noted, however, that all these previous studies were
concerned with some limited cases of boundary conditions ; namely, those of the rigidly
clamped, the simply supported in the classical sense, or the compiletely free ends, and that
the effect of the boundary conditions has not yet been thoroughly clarified.

The purpose of this paper is to clarify the effect of the boundary conditions on the
breathing vibrations of a circular cylindrical shell filled with a liquid, in the case specified
above. By breathing vibrations we mean those vibrations characterized by asymmetric
modes about the axis of the cylinder which remains still in the course of vibration. Use will
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be made of the asymptotic method developed in previous papers to derive a simple formula
for the natural frequency and to establish a classification of the vibration characteristics.
Results are examined by an experiment in which use is made of the technique developed in
previous papers for the free vibrations of empty shells. The reader is referred to the authors’
previous papers for details of the mathematical developments and experiment.

2. VIBRATIONS OF THE SHELL

We consider free vibrations of a circular cylindrical shell having a radius R. a thickness
#, a length 2L, a mass per unit volume p,, Young’s modulus E, and Poisson’s ratio v. The
shell is filled with a liquid having a mass per unit volume p,. A cylindrical coordinate system
(x.r.0) is set. taking the origin as the center of the shell-liquid system and x along the axis
of the cylinder, so that the midsurface of the shell is specified by r = R, — L < x € L and
0 <€ 8 < 2n. The axial. circumferential and lateral displacements are denoted by u,, u, and
w.; w. positive for outward normal to the midsurface. The stress resultants are denoted as
usual by N, Nyand N,, and the stress couples by M, M, and M ,. The iateral and tangential
components of the equivalent edge-shear are denoted by Q. and S,,.

We assume that the free vibrations are small perturbations from the equilibrium
configuration under hydrostatic pressure. We also assume, in deriving the equations of
motion for the free vibrations, that the hydrostatic pressure is negligible and only a flue-
tuating pressure p acts upon the shell from the oscillating liquid. It will be shown in the
following section that p is proportional to the lateral acceleration of the shell and the factor
of proportionality defines the virtual mass of the internal liquid. If we denote the virtual
mass per unit volume by p,, therefore, we have

p= —phd*w.jor. 't

The basic equations formulated by Budiansky (1968) are specialized for the problem
stated above. The equations of motion read

aN.\' + l aNW ] aM,\'(? —@
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where y is defined as
y=1+p/p,. 3

Variables and operators involved in the governing equations and the boundary con-
ditions in this section are expressed in a nondimensional form according to
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where K, D and u are defined as

Eh ER’
=120 Py ©)
and
p=(1-v)p,R*/E. (6)

Equations 2 are expressed in terms of the displacements «, v and w. From the first two
of these equations, u and v can be separated and expressed only in terms of w. The results
are used to eliminate u and v from the last of eqns (2) to obtain a single equation for w. If
small terms are neglected, it becomes

5

1
L SOVW—G+2)w —w P =0, (7)

é

Viw4 8w 4 2w A" w4

where
é=h12R?* « 1. t3)

It is noted that, when y = 1, eqn (7) becomes identical with the one derived in Koga and
Saito (1988) and Koga (1988) for empty shells.
Quantities to be prescribed as boundary conditions can be expressed only in terms of
w. If small terms are neglected, the following relations hold :
V4u = —VW’W+W’"
Vo= ~Q4w" —w'"
V4N = (l _v2)wl1"+5v(w:::+ w::) —yy
VM = =V (W +vw ) —v[R+ W +w' ]’
VS = —(1=vHIw" =R =)W +w) "+ (1 +v)w **
ViQ = =V W+ 2= ] =3w"" = 2—-v)w'*. 9
It is noted that eqns (9) are identical with those derived for empty shells.
Boundary conditions to be considered are those of the simply supported, the clamped
and the free ends. They are defined and designated as follows :
Simply supported ends;
Siw=M=u=v=0), S2w=M=u=5S=0)
S3(w=M=N=v=0), S4w=M=N=S5=0).

Clamped ends;
Cilw=w=u=v=0), Qw=w=u=S5S=0)
Cw=w=N=0v=0), C4w=w =N=85=0).
Free ends;

FR(Q=M=N=S8=0). (10)
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Let a solution of eqn (7) be assumed in the form
w = exp (4y) cos nf sin wT. (1
Then substitution of eqn (11) in egn (7) yields
A+AL+ AN +A L +A4,=0, (12)
where

Ay = —an®, Ay = (1—v2)/5
A, = —4n*(n® = 1)> + 2yn* +3+2v)w? /6
Ay = n*(n* = 1) =n’(yn* + DHw?/s. (13)

]

When 4, = 0, a definite value of w is obtained from the last of eqns (13), which is
denoted as w,:

wi = on*m*—1)*/(yn*+1). (14)

Let a geometric parameter A be defined and assumed much smaller than unity :
A=n6/(1-v)]"?* « 1. (15)

It follows then that

yw3 = O(A?). (16)
It is seen that 4,, A, and A, are identical with those derived for empty sheiis except
that the term 2n°w?/8 in 4, is now multiplied by y. But the order of magnitude of this term
remains the same, under the assumption of eqn (16), as in the case of empty shells. The
argument by Koga and Saito (1988) for the existence of nontrivial solutions of w therefore
applies to the present problem. Consequently, nontrivial solutions exist either when both
ends are free, FR-FR, or when one end is free and the other is supported without axial
constraint, FR-83, -84, —C3 and —C4. Since the former case is unrealistic for liquid-filled

shells, only the latter cases are of practical interest. Thus, the nontrivial solutions of w are
given as

w = Wy(l1+y/l)cos nf sin wT. a7

for FR-S3, -84, —C3, and —-C4 ; where W, is an arbitrary constant. Equation (17) represents
the inextensional vibrations.

Let us now proceed to the cases where 4, # 0. It will be assumed that w is of the same
order of magnitude as w,, so that

y? = O(AY). (18)
The solutions of eqn (12) now take the form
A, Ary=En, Ay, A= xinmy, A5, e, A Ay = tn(Eytin,) (19)

where &), 7,, &, and n, are positive and i = (—1)"2,
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The root and coefficient relations of eqn (12) are
2 -+ —ni) = — A3/’
&2+ =it + 283 —nd) (&l —nD) = Ay/n’
28t (& —nD) — (i —nD(E3+nd)? = 4,/n®
EMiEi+nd)? = —Ag/n’. (20)
It can be shown that the solutions of eqns (20), which are asymptotic in A, are given by
Ei=n=A"4+0(), & =n,=2A) "*+0(4) (21

where £, is positive and of order of magnitude unity. The first approximation solutions for
/4 are thus given by

b da=2AnEo, Ay, A= 2iAYVny, A5, A, Ay Ag= £(12DRQA)7'7

(22)
The last of eqns (20) now yields a formula for the natural frequency
(a-v)¢
2 __ 2
w _w°[1+_—5(n2——1)2 (23)

where &, is unknown and yet to be determined from consideration of the boundary
conditions.

It should be noted that the eigenvalues A and w as given in eqns (22) and (23) are
identical in form to those derived for empty shells. The only difference is that w, now
depends on y as given in eqn (14). The fact that y is involved neither in eqns (22) nor in eqns
(9) implies that the characteristic equations for &, derived from consideration of the
boundary conditions, are the same as those derived for empty shells. Thus, if the inex-
tensional vibrations are dealt with inclusively, we have five different types of the charac-
teristic equations, depending on the combinations of the representative boundary conditions
which are defined and designated as

SRw=u=0), SFw=N=0), FR(N=S=0). (24)

The characteristic equations and the combinations of the boundary conditions are
summarized in Table 1.

Table 1. Characteristic equations and combinations of boundary conditions

Type Characteristic Equations Combinations Of B.Cs Representative B.Cs
1 cosh 2né,lcos 2né | l—1 =0 S1-Si, S1-82, S1-Cl, S1-C2 SR-SR
$2-82, §2-Cl, S2-C2, C1-C1
CI-C2, C2-C2
11 cosh 2né I'sin 2ng,/ S1-83, S1-84, S1-C3, S1-C4 SR-SF

—sinh 2n¢ ,/cos2n /=0 S2-83, S2-84, S2-C3, 52-C4
Cl1-83, C1-84, C1-C3, C1-C4
C2-83, C2-84, C2-C3, C2-C4

111 sin2né,/ =0 S$3-83, S3-§4, S3-C3, S3-C4 SF-SF
S4-84, $S4-C3, S4-C4, C3-C3
C3-C4, C4-C4

v cosh 2né lcos 2né | l+1 =0 FR-S1, FR-S2, FR-CI, FR-C2 FR-SR

A% =0 FR-S3, FR-84, FR-C3, FR-C4 FR-SF
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3. VIBRATIONS OF THE LIQUID

We assume that the liquid is incompressible and inviscid and its flow is irrotational ;
namely, a potential flow having a velocity potential ¢. The velocity components in the
liquid in the coordinate direction are denoted by ¢, ¢, and v4. Then, by definition, we have

dp ~ d¢ 109 5
l'.\‘_a~ lr_—c-a;* Lfi_;'a‘g' (-5)
The velocity potential ¢ satisfies Laplace’s equation :
2 1 62 2
0% i 1 0°¢ 0d°¢ —o. (26)

wtratrtae

Let ¢ denote the fluctuating pressure in the liquid. Then, ¢ is determined from Ber-
noulli’s equation such that

= _p ¢ 2
If use is made of the second of egns (25), a differential form of eqn (27) is obtained as
== —p . (28)

It is seen that Laplace’s equation also holds for g.

If the shell has a moderate to great length, the effects of the liquid motion at the free
surface and of the vibrations of the elastic bottom plate are negligible in the evaiuation of
the fluctuating pressure ¢g. The boundary conditions to be considered are those imposed on
the surface of the shell. Thus, we have the continuity condition for the radial velocity

o =R 29
3 onr=R. (29)

v, =

We also have to identify the liquid pressure ¢ with the pressure p acting on the surface of
the shell.

g=p; onr=R (30)

When the shell is supported at both ends so that the vibrations of the shell are of Type
I, Type 11, or Type IIl, 4 may be assumed in the form

g = q.(r)sin (%) cos nf sin wT. €}))

Substitution of eqn (31) in Laplace’s equation for ¢ yields an ordinary differential
equation for g, whose solutions are given by the modified Bessel functions of the first kind
of order n; I,(rr/2L). Thus, we have

nr X

q=C,l, (ﬁ) sin (2’L) cos nf sin T (32)

where C, is an arbitrary constant.
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It follows from eqn (28) that

av, n I,

__.r 5L 3
o - T 2Lp 1,7 (33)

where I, = dl,/dr.
Applying the boundary conditions, eqns (29) and (30), to eqn (33). we obtain the
pressure p as

2Lp, I(R/2L) 0°w.
n I (nR/2L) or* "’

(34)

The coefficient on the right-hand side of eqn (34) defines the virtual mass. Thus, we
have

_2pL I,(nR/2L)

b=k T,@RL) .

This form of the virtual mass has been derived by Berry and Reissner (1958) and is being
used widely.

The right-hand side of eqn (35) can be expanded into power series of nR/2L if the
shell has a moderate-to-great length. An approximate expression of p, is obtained by
retaining only the leading term in the series. Thus,

p. = pR/nh (36)
provided that
(nR/2nL)? « 1. 37

This form of p, was used by Lakis and Paidoussis (1971) for finite element implementation.
When the shell is free at one end and supported at the other so that the vibrations are
of Type IV or Type V, ¢ may be assumed to be a linear function of x as

g=q.("(1+x/L)cos nf sin oT. (33)

Proceeding as before, we obtain

R\ 0%w.
p=-— (%)h - (39)

It is easily seen that the expression for p, resulting from eqn (39) is identical with eqn
(36). This implies that the axial modes of the liquid column may be considered constant or
linear along the axis except in a region near the supported ends, if the shell is as long as
specified by eqn (37). We will use eqn (36) to evaluate the virtual mass for all the types of
vibrations.

4. COMPARISON WITH EXPERIMENTS

An experiment was conducted on a seamless aluminum cylindrical shell having a radius
of 33.0 mm and a thickness of 0.155 mm. It has a mass per unit volume of 3.23 x 10° kg
m~? including the effect of the dry powder spray paint. A Young’s modulus of 69.0 GPa
and a Poisson’s ratio of 0.3 were used for the calculations of the frequency parameter w.

Five specimens having the boundary conditions of Type I, I, II1, IV and V were made
from the same cylindrical shell by adjusting the ends so as to establish the representative
boundary conditions of SR, SF and FR. The length of the specimens therefore differs
slightly from one to another. The representative boundary conditions of SR were established
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by soldering the end of the cvlinder to a metal block using a low melting point metal. Those
of SF were established by attaching a flexural thin annular plate to the end. An annular
plate having an inner radius of 11.0 mm and an outer radius 33.0 mm was made from an
aluminum sheet of thickness 0.30 mm, which was attached to the end by adhesive resin.
Those of FR were established naturally by leaving the end completely free.

The test specimen was excited by a small piece of piezoelectric oscillator of thickness-
expansion type having a length of 20 mm, a width of 5.0 mm, a thickness of 1.0 mm, and
a mass of 0.8 g. The oscillator was attached firmly by adhesive to the outer surface of the
shell, parallel to the generator lengthwise. It was located near the supported end in the hope
of avoiding or minimizing the effect of the concentrated mass of the oscillator.

The resonant vibrations were detected by holographic interferometry. Change in the
real-time fringe patterns was observed as the excitation frequency was swept slowly upward.
When a rapid increase in the fringe number was observed. a peak of the fringe number was
determined by tuning the excitation frequency manually in a fine range. The time-average
holograms were taken at that peak aiming at the shell in four direction, 90 apart. If a
sequence of the fringe patterns developed from these holograms showed a regular and
periodic pattern consisting of clusters of smooth and symmetric dark fringes separated by
the brightest straight nodal lines, the excitation frequency at that peak was determined as
the natural frequency, and the natural mode was identified by counting the nodal lines.

The tests were conducted on a type of specimen first in the empty state and then in the
state filled up with water. The tests proceeded to another type of specimen until all the five
types were tested. The natural frequencies thus determined are plotted against » in Figs 1.
2. 3. 4 and 5. The curves show the theoretical values calculated with the aid of eqn (23)
taking n as a continuous variable. The nondimensional frequency parameter is converted
to the frequency in Hertz by the relation

f=5—. (40)

A satisfactory agreement is observed between the theory and experiment except for a slight
deviation in the case of Type 1.

3000 3000
TYPE 1 TYPE 1
2L/R = 3.70 2L./R =370
Theory, Eq.(23) Theory, Eq.(23)
O, & Experimen! O, & Experiment
Z 2000} £ 2000}
5 ° 5
2 =
s EMPTY &
=t o s
& b
- 1000 w1000
A FULL FULL
.\ \
i — ) — A J. ' 1 i 1 ' 1 1 i A H . A
0 5 10 0] 5 10
WAVE NUMBER n WAVE NUMBER n
Fig. 1. Comparison with experiment: Type I, R/h = Fig. 2. Comparison with experiment : Type II, R/h =

213. 213.
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Fig. 3. Comparison with experiment : Type IIl, R/h = 213.
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Fig. 5. Comparison with experiment: Type V, R/h =
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Fig. 6. Comparison of natural frequencies for clamped—lamped shells: Yamaki et al. (1984)
(—— calculations, O, A experiment), present {~—— eqn (23), Type II).
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Fig. 7. Comparison of natural frequencies for clamped-free shells: Chiba er al. (1985)
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Results of numerical calculations and experiments by Yamaki et al. (1984) for a
clamped-clamped shell and by Chiba er al. (1985) for a clamped-free shell are shown in
Figs 6 and 7., which are compared with the present results for Type II and Type IV,
respectively. The boundary conditions of the test specimens of the clamped-clamped shell
are such that we can anticipate that the resonance points of these specimens lie somewhere
between those of Type I and Type II. We have therefore chosen the present results of Type
11 for comparison anticipating that these will serve as a lower bound for the experimental
results. In the case of liquid-filled shells, the present results are slightly lower than the
experimental results. This may be attributed to the effect of hydrostatic pressure, which has
been taken into account in the analyses of Yamaki (1984) and Chiba et al. (1985).

5. CONCLUSIONS

A practical formula has been proposed for the natural frequency of circular cylindrical
shells filled with a liquid. The formula is given in a nondimensional form in eqn (23), which
is rewritten here in the dimensional form so as to calculate the natural frequency in Hertz:

f2

B ER*n*(n* —1)° [1 12(1—v2)R2§‘1‘:|
—4B(1—v)T’R*[(p, +pIn’ +p.] R =1 |

The virtual mass p, of the liquid is given approximately by

_pR
Pe= "0

The eigenvalues £, are given as the minimum roots of the characteristic equations of
Table 1:

onL =4.730(TypeI), =3.927(Typell),
"R J°' | =n(TypeIlI), =1.875(Type IV), =0(TypeV)

where L is the half-length of the cylinder. The type of the characteristic equations de-
pends on the combinations of the representative boundary conditions; SR(w = u = 0),
SF(w= N=10) and FR(N = S = 0). It can be stated, therefore, that the free vibration
characteristics of liquid-filled shells depend on whether the ends are free or supported, and
whether or not the supported ends are axially constrained.
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